Omega-3 fatty acids enhance phagocytosis of Alzheimer's disease-related amyloid-β42 by human microglia and decrease inflammatory markers.

نویسندگان

  • Erik Hjorth
  • Mingqin Zhu
  • Veronica Cortés Toro
  • Inger Vedin
  • Jan Palmblad
  • Tommy Cederholm
  • Yvonne Freund-Levi
  • Gerd Faxen-Irving
  • Lars-Olof Wahlund
  • Hans Basun
  • Maria Eriksdotter
  • Marianne Schultzberg
چکیده

The use of supplements with omega-3 (ω3) fatty acids (FAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is widespread due to proposed beneficial effects on the nervous and cardiovascular systems. Many effects of ω3 FAs are believed to be caused by down-regulation and resolution of inflammation. Alzheimer's disease (AD) is associated with inflammation mediated by microglia and astrocytes, and ω3 FAs have been proposed as potential treatments for AD. The focus of the present study is on the effects of DHA and EPA on microglial phagocytosis of the AD pathogen amyloid-β (Aβ), on secreted and cellular markers of immune activity, and on production of brain-derived neurotrophic factor (BDNF). Human CHME3 microglial cells were exposed to DHA or EPA, with or without the presence of Aβ42. Phagocytosis of Aβ42 was analyzed by flow cytometry in conjunction with immunocytochemistry using antibodies to cellular proteins. Secreted proteins were analyzed by ELISA. Both DHA and EPA were found to stimulate microglial phagocytosis of Aβ42. Phagocytosis of Aβ42 was performed by microglia with a predominance of M2 markers. EPA increased the levels of BDNF in the culture medium. The levels of TNF-α were decreased by DHA. Both DHA and EPA decreased the pro-inflammatory M1 markers CD40 and CD86, and DHA had a stimulatory effect on the anti-inflammatory M2 marker CD206. DHA and EPA can be beneficial in AD by enhancing removal of Aβ42, increasing neurotrophin production, decreasing pro-inflammatory cytokine production, and by inducing a shift in phenotype away from pro-inflammatory M1 activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specialized Pro-Resolving Mediators from Omega-3 Fatty Acids Improve Amyloid-β Phagocytosis and Regulate Inflammation in Patients with Minor Cognitive Impairment.

In this review we discuss the immunopathology of Alzheimer's disease (AD) and recent advances in the prevention of minor cognitive impairment (MCI) by nutritional supplementation with omega-3 fatty acids. Defective phagocytosis of amyloid-β (Aβ) and abnormal inflammatory activation of peripheral blood mononuclear cells (PBMCs) are the two key immune pathologies of MCI and AD patients. The phago...

متن کامل

Changes in Serum Levels of FABP4 and HsCRP after Administration of Omega-3 Fatty Acids Separately or + Vitamin E in Patients with Coronary Artery Disease

 Background and purpose: Inflammatory markers of A-FABP and HsCRP play an important role in progression of cardiovascular disease. Anti-inflammatory and anti-platelet aggregation effects of omega-3 fatty acids are known. The aim of this study was to investigate the effects of omega-3 and omega-3+ vitamin E supplements on serum levels of these inflammatory markers. Materials and methods: This d...

متن کامل

NSAID and antioxidant prevention of Alzheimer's disease: lessons from in vitro and animal models.

Both oxidative damage and inflammation are elevated in brains of Alzheimer's disease (AD) patients, but their pathogenic significance remains unclear. The reduced AD risk associated with high intake of both nonsteroidal anti-inflammatory drugs (NSAIDs) and antioxidants suggests causal roles, but clinical trials in AD patients have yielded only limited or negative results. To test the potential ...

متن کامل

Distinct inflammatory phenotypes of microglia and monocyte‐derived macrophages in Alzheimer's disease models: effects of aging and amyloid pathology

Alzheimer's disease (AD) is a neurodegenerative disease characterized by formation of amyloid-β (Aβ) plaques, activated microglia, and neuronal cell death leading to progressive dementia. Recent data indicate that microglia and monocyte-derived macrophages (MDM) are key players in the initiation and progression of AD, yet their respective roles remain to be clarified. As AD occurs mostly in the...

متن کامل

Effect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats

Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Alzheimer's disease : JAD

دوره 35 4  شماره 

صفحات  -

تاریخ انتشار 2013